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Weakly nonlinear analysis of the secondary bimodal instability in planar nematic convection
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We present a weakly nonlinear analysis of the secondary transition from one- to two-mode structures in
planar, extended geometry nematic convection. The secondary growth rate being then an explicit function of
the nonlinear coupling terms of the basic equations, we can perform a systematic investigation of the physical
origin of the secondary mode. This mode turns out to be selected by a nonlinear homogeneous rotation of the
director in the horizontal plan¢S1063-651X97)51508-X

PACS numbes): 61.30-v, 47.20.Ky, 47.20.L.z

A large class of extended dynamical systems, modeled beqy>O) andS(q) (“zag,” such thatg,q,<O0) exist. Fur-
nonlinear partial differential “basic” equations, presents ather increasing, there occurs a transition timodal vari-
progressive transition to spatiotemporal complexity. Thergose (BV) structures, i.e., the branching ofdual mode k
usually exists a cascade of instabilities between more ang s(q) off the primary OR modey [7,8]. Whereas the exis-
more complex solutions of the basic equations. These solience of a short-wavelength destabilization mode of the OR
tions, and their stability, are mostly studied by numericalhas been confirmed by numerical stability analyzes both in
methodd 1], that are very accurate but do not allow a directelectroconvection and thermoconvection, starting from the
understanding of the physical mechanisms involved. Slighthybasic equation$§9,10], no mechanism for this bimodal has
above the onset of the first instability, in the low amplitudebeen proposed so far. In the following, we will first present a
regime, the weakly nonlinegWWNL) methodg2] are an al- general WNL model for the bimodal secondary instability,
ternative approach whereby the nonlinear terms of the equa&nd then focus on thermoconvection.
tions are treated as perturbations. These methods are lessThe basic evolution equations for convection instabilities
accurate, but they often give qualitatively correct results. Arfake the general forrfil0]
additional advantage is that secondary growth rates, instead
of being the fully numerical result of an eigenvalue problem, Do V=LNV+NyV,V)+N3(V,V,V)+---, (D
are explicit functions of the nonlinear terms of the basic
equations. As we wish to show here using one model systemiyhereV is the local state vector of the fluid/&0 at rest,
this allows asystematic investigation of nonlinear physical D,L. are linear andN,,N3 nonlinear differential operators.
mechanismsWe will consider the transition from mono- The WNL methods use as a basic ansatz for approximate
mode to bimodal structures that we found in recent experisolutions of Eq(1) some eigenmodeg, (p) of D 'L, char-
ments[8]. This transition is often one of the first symmetry acterized by their horizontal wave vectmrand their QFOWth
breakings on the route to “complexity,” but is yet poorly ratea(p;e). In the WNL domain,o(p; €)=, [ e~ €x(p)],
understood. whereeg(p) is the linear threshold of the moqbeand Tpis a

Our model system consists of the convection instabilitiesharacteristic time; for the critical modeg. one has
of nematic liquid crystals, which present secondary bifurca€o(dc) =0 andrq =1. In nematics, experimental investiga-
tions even in the low amplitude regini@|. Nematics possess tions[6,8] as well as theoretical studi¢see the Fig. 6.7.b of
two geometric degrees of freedom, associated with the dire¢3]) have shown that the long-wavelength instabilities do not
tor field n (mean orientation of the elongated moleciles affect the OR, as soon as their wave vector has a sufficiently
which couple with the others fields of the fluid. In a planarlargeq, component. Hereafter we will use for our investiga-
nematic layer, whera is set to a horizontal directionat the  tion of short-wavelength instabilities a primary mozig q
horizontal boundary plates, two linear instability mecha-deduced from the thermoconvection experiments qc
nisms exist: electroconvection under the application of an+y(qctan1(3) [8].
electric voltagd 4], and anisotropic thermoconvection under  The homogeneous BV solutions of Ed) are expressed
the application of a vertical thermal gradief®]. Normal as

rolls (NR), of horizontal wave vectory, parallel to x

(qc.= qcx) usually appear at threshold in extended geometry  V=AV,(q)+BV;(k) +c.c+(second harmonig¢s (2)
thermoconvection and electroconvection. When the reduced

control parameteg, which measures the distance from thelf k andq are active, i.e., of small growth rate, their second
convection threshold, is increased, these NR generally urharmonics, which lie in the subspace of very negative growth
dergo a long-wavelength secondary instability that leads t¢ate linear modes, can be obtained by adiabatic elimination:

oblique rolls (OR), of wave vectorg=g,x+dyy with non-
zero g, [6,8]. In this process the reflectioB:y——y has  V,(p,p’)=—Lg [N[Vi(p),Vi(p')]+perm| for p#p’.
been broken, and two variants of OR,(“zig,” such that (3)
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By inserting Eq.(2) in Eq. (1), and projecting, with an ad-
equate scalar product in théspace, onto the adjoint vectors
U4(qg),U4(k) defined as if10], one obtains the amplitude
equations

dA= eA—|A[?A—gyy|B|?A,
7B=(e—€o(K))B—|B|’B—galAlI’B, (4

where we have assumed, singds close toq., €y(q)=0
and 7,=1. The main coupling coefficient is

Igk= — k(U 1(K), T
where
Ta=N2(V1(—0),V2(q,k))+ perm
+N2(V1(a),Va(—0a,k))+perm
+Na(Va(a, =), Vi(k))+perm
+N3(V1(9),V1(—0a),Va(k))+perm. (5)

The OR(q solution of Eq.(4), A=e,B=0, loses stability
against a BV §;k) if the secondary growth rate

(6)

becomes positive, i.e., only <1, and fore then larger
than

ko' = €(1—ggk) ~ €0(K)

€o(K)

-Gy @)

ev(q;k)=

The active modd& which minimizes this secondary threshold
is the dual ofg. In the case of a primary supercritical insta-

bility towards the OR, as assumed here, one bgs—2
whenk—q. On the other hand, whenmoves away frong,

dqk can reach strongly negative values which favor the bi,

modal instability. Figure 1 shows a typical result fgy in
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FIG. 1. Results of the stability analysis ofjazig against short-
wavelength perturbation modés Thin line: circle|k|=|g|=7 in
units of the inverse layer thickness. Dashed line: frontier of the
active mode domain defined by(k,ey)>—0.15 (ey=0.09).
White region:gqy > 1< the modek cannot destabilize the mode
Light gray region: 6<gy <1< the modek, when linearly excited,
can destabilize the modeg [ €,(q;k)>eq(k)]. Deep gray region:
g<0« the modek is nonlinearly excited by the mode
[ev(d;K)<eg(K)]. Under the application oB:k——k,, gq is
asymmetric. It reaches strongly negative values only for active
modesk zag, and thus the minimum ef,(q;k) (= bimodal vari-
cose threshola,)) is obtained for & zag.

the lowest-order Galerkin projection technique to expand the
vertical dependence of the fields, the linear modes are ap-
proximated by:

V(@)= (¢S1(2),nySy(2),n,S1(2), TC1(2),9S,(2)) €9

There S, are sine andC,, are Chandrasekhar functions, of
parity (—1)"** under the inversiom— —z, z=0 being the
mid-plane of the layer. The second harmonics have opposite
vertical symmetry under this inversion. For instance, the ho-

thermoconvection, calculated with the parameters for the "q'mogeneous second harmonic reads:

uid crystal 5CB at 27 °€3], that we used in the experiments
[8]. The position of the dual mode is selected by a balanc

between the nonlinear interaction factor—(tj;qk)‘l, which

¥,(0,0") = (#"S,(2),n}'S1(2),n}'Sx(2),

favorsk far from g, and the linear costo(k) of the modek, XTHC,(2),9"Sy(2)) el@ra)r (8)
which favors k close to g (in particular, preferentially
|k|=|q|). The calculated dual mode, shown in Fig. 1, corre-with g’ = —q. The ten components &f,(q) andV,(k) are

sponds qualitatively to the one observed experimen{&lly
Indeedk is in the zag region, far away from, but with a

smaller angle betweek andx : here k,x)=25° instead of

calculated as eigenvectors of the “matrice® 'L, and
DflLEO(k); the 15 components o¥,(q,—q),V,(q,k) and

V,(k,—q) are then obtained by the nonlinear adiabatic for-

=55° in the experiments. This discrepancy could certainlymulas(3). gy is then calculated as the scalar product of Eq.
be reduced by using more sophisticated humerical method$5):
but we will see that it does not affect our results concerning
the mechanisms of the BV instability.

The main advantage of this WNL approach is that the
secondary growth rate of the bimodal instability E6). has
an explicite dependence, governed gy, only. The origin (9)
of the BV instability can then be found by extracting from
Eq. (5 the terms responsible for the strongly negative values-or each of the fieldsp,n,, ..., each quadratic and cubic
of gqx in the dual region. We now get into the details of this term in the corresponding basic equation gives six contribu-
study for thermoconvection. There, the dimensionless locdions according to Eq(5), and as a resulfy is a sum of
state vector of the fluid i&/=(¢,n,,n,,f,g), where ¢= more than 3000 terms. The contributions of each of these
temperature modulatiori,g= velocity potential§10]. With ~ terms are shown on top of Fig. 2. The contributions, like

Jgk= — 7'k<UiT>
=—n(UyTy+ UnyTny+ UnZTnZ+ UiTi+UgTy).
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FIG. 2. Contributions of all nonlinear terms in tiggn, ,n,, andf basic equations tgy, for the wave vectorg andk of Fig. 1. The
first range of indexes, on the discrete horizontal axis, refers to the contributions @yertdg. (9), the second range to the contributions
due toTny, etc. In each range the elementary terms are ordered according () Ethe asymmetry of between zag and zig perturbation
wavevectors 9gq=dq— qs(k) » 1S Shown on the lower curve to be mainly due to two nonlinear coupling téamsws.

those of theg velocity potential(not shown, are all much  from the a, viscous coupling termsthe director equation
smaller than the largest ones in the other fields contributionsnvolves the anisotropic viscosities, and a3, but the a;
but strong contributions due @, Ty, Or Ty exist. The contribution is here negligibje We will now elucidate in
complexity inherent in nonlinear physics, which implies thetwo steps the mechanism expressed by tefh@s and (11).
generation of harmonics, and so the interaction of a large First, we focus on the, factor in terms(10) and(11). It
number of modes via a large number of coupling terms, ids then, component of the second harmoiig(q, —q) (8),
manifest in Fig. 2. This complexity implies that a lot of horizontally homogeneous and evenznit thus indicates a
mechanisms are, at small angldsX), responsible for the global rotation of 'the director in oblique rollswhen one
bimodal secondary instability. Nevertheless, we will showP2sses from the zig to the zag, i.e., apples,——qy, one
that only few mechanisms control the asymmetry of the surhas ny'(g)——ny'(q): the rotation occurs only for OR, in
facegq under the application of the reflectighk,——k,, ~ Symmetrical directions for the zig and the zdgg. 3. The
or the values ofyy at large anglesK,i)_ main contributions ton?(q) are due to the quadratio,

The asymmetry of the surfaagy under all reflections —source termsi,d,v,—nydsv, from thea, viscous coupling
(see Fig. 1 is specific to anisotropic systems. In isotropic terms, and—v,d,n, from the advection terms. Therefore,
convection for instance, the coupling coefficient betweerthe rotation can be heuristically understood, after noticing
cross rollsg andk would be invariant under the reflection that, because of the, terms in the director evolution equa-
with respect to the planeg(z). In our casegy takes values tion, n reorients in order to avoid velocity gradients. In OR,
more negative fok zag than for its symmetri§(k) zig, i.e.,  this can be achieved by a rotationmtowards the direction
d9qk=9qk—Ygs(k) IS negative fork in the zag region, and of the flow where there is no velocity gradient, i.e., the axis
that selects the dual in the zag region.dgy , many terms  of the rolls.
cancel, and thugbottom of Fig. 2 two contributions domi- Second, we analyze the resonances which can be induced
nate all the ot_her ones, by at least _4()%]._The_se contribu- by the terms(10) and (11). With our phase choicep(k),
tions appear inl , and Tn,, respectively, i.e., in the corre-
sponding right-hand side of the basic equati@hsfor these .
two fields. Since the light-hand side of E@) reads simply 7ig (¢,>0) zag (4,<0)
for these fieldsd;¢p="---,9;n,=---, we call them¢ andn,
source terms. They appear in the third line of Eg), and R
couple then, component ol/,(g,—q) to some components ~ \'}l N
of V41(k). The first contribution is due to thé source term l_’

5
X

<>

N>

—Rk,dy(nyn,) = —RraNy ' ()iky N, (k) Si(2)e™™ " (10) X
FIG. 3. Nonlinear reorientation of the director figidn oblique

from the anisotropic heat diffusion termR, being the Ray- rolls. The layer is seen from above= anchor_ing direc_tion= n at
leigh number andk, the anisotropy of heat diffusivity. The rest. For 5CB at 27 °C, one should have in the midplane of the

second contribution is due to time source term layer ny="}'(q)e==1.7¢, depending on th& symmetry of the
oblique roll structure. This reorientation selects wwymmetry(zig

o " or zag of the secondary wave vectérin the bimodals, with the
nydyv,= Ny (Q)ikyk*f (k)Sy(2)Cy(z)e™" 11 criterion n!(q)k,>0.
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this corresponds in our modgee the expressiaf?) of the
BV threshold to the fact thag reaches there very negative
values. Indeed, on the circl&|=|q|, we have found that as
soon as arg>40°, Eq.(11) becomes the leading contribu-
tion to g4, and that for arg—90°, gy reaches, due to this
contribution, values of the order ef F= — the ratio of ther-
mal to orientational diffusivity=—800. The mechanism as-
sociated with Eq.(11) becomes thus for akg>40° the
unigue leading mechanism towards the.BV
direction will be preferentially enhanced © In conclusion, we have developed a WNL model to de-
X . L . scribe the bimodal secondary instability in anisotropic ex-
. The couplings of th? convective yelomty field with the.tended systems. We have then shown how a careful study of
director, and the focusing terms, being quite analogous Bhe coupling coefficient leads to the nonlinear terms of the

thermocpnvectlon and eIectrocpnvectlon, these_ non“r.]e%asic equations which control the bimodal instability. We
mechanisms must also develop in electroconvection. This IRave thus discovered that, in planar nematic convection, a

confirmed by the systematic observation of the SeCOnOIar}’eorientation of the director field in the horizontal plane is

:ira:si,ltl?r? ?R_’ E’Vm'n tg? rf?"\;nve ;/vl‘k;ﬁirzeir:hen(]jlreﬁt%r df'iStlc(;r'inthe key feature that excites the dual wave vector destabiliz-
on is the less damped. at low sta g magnetic e ing the oblique rolls. We believe that our method to extract

f(k), andn,(k)/i are always positive real numbers. There-
fore the ¢ source tern{10) and then, source term(11) will
excite the ¢ and n, components of the mod&k if
n!!(q)k,>0. For q zig, since n//(q)<0, this occurs if
ky<0, i.e., selects the dudl in the zag region. Physically,
terms(10) is a geometrical correction to the heat focusing,
and terms(11) to the flow-induced orientation of the direc-
tor. They express that, after a rotation of the direcéband

n, modulations with a new wave vector oriented in the sam

thermoconvection, and at low frequeney of the applied
voltage in electroconvectiof8,7].

These experiments have shown that the BV instability

usually produces dual modes with a large angléartk, x):
cf. the angle of 55° measured|ifi], or, in electroconvection
at low w, the angle of 70° found recently ifv]. Since in
both casesy(k) reaches very high values for &rg90°,

the physical mechanisms is applicable to all nonlinear sys-
tems in the low amplitude regime.
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