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Weakly nonlinear analysis of the secondary bimodal instability in planar nematic convection

Emmanuel Plaut and Roland Ribotta
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~Received 27 September 1996!

We present a weakly nonlinear analysis of the secondary transition from one- to two-mode structures in
planar, extended geometry nematic convection. The secondary growth rate being then an explicit function of
the nonlinear coupling terms of the basic equations, we can perform a systematic investigation of the physical
origin of the secondary mode. This mode turns out to be selected by a nonlinear homogeneous rotation of the
director in the horizontal plane.@S1063-651X~97!51508-X#

PACS number~s!: 61.30.2v, 47.20.Ky, 47.20.Lz
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A large class of extended dynamical systems, modeled
nonlinear partial differential ‘‘basic’’ equations, presents
progressive transition to spatiotemporal complexity. Th
usually exists a cascade of instabilities between more
more complex solutions of the basic equations. These s
tions, and their stability, are mostly studied by numeri
methods@1#, that are very accurate but do not allow a dire
understanding of the physical mechanisms involved. Sligh
above the onset of the first instability, in the low amplitu
regime, the weakly nonlinear~WNL! methods@2# are an al-
ternative approach whereby the nonlinear terms of the eq
tions are treated as perturbations. These methods are
accurate, but they often give qualitatively correct results.
additional advantage is that secondary growth rates, ins
of being the fully numerical result of an eigenvalue proble
are explicit functions of the nonlinear terms of the ba
equations. As we wish to show here using one model sys
this allows asystematic investigation of nonlinear physic
mechanisms. We will consider the transition from mono
mode to bimodal structures that we found in recent exp
ments@8#. This transition is often one of the first symmet
breakings on the route to ‘‘complexity,’’ but is yet poorl
understood.

Our model system consists of the convection instabilit
of nematic liquid crystals, which present secondary bifur
tions even in the low amplitude regime@3#. Nematics posses
two geometric degrees of freedom, associated with the di
tor field n̂ ~mean orientation of the elongated molecule!,
which couple with the others fields of the fluid. In a plan
nematic layer, wheren̂ is set to a horizontal directionx̂ at the
horizontal boundary plates, two linear instability mech
nisms exist: electroconvection under the application of
electric voltage@4#, and anisotropic thermoconvection und
the application of a vertical thermal gradient@5#. Normal
rolls ~NR!, of horizontal wave vectorqc parallel to x̂
(qc5qcx̂), usually appear at threshold in extended geome
thermoconvection and electroconvection. When the redu
control parametere, which measures the distance from t
convection threshold, is increased, these NR generally
dergo a long-wavelength secondary instability that leads
oblique rolls ~OR!, of wave vectorq5qxx̂1qyŷ with non-
zero qy @6,8#. In this process the reflectionS: ŷ°2 ŷ has
been broken, and two variants of OR,q ~‘‘zig,’’ such that
561063-651X/97/56~3!/2375~4!/$10.00
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qxqy.0) andS(q) ~‘‘zag,’’ such thatqxqy,0) exist. Fur-
ther increasinge, there occurs a transition tobimodal vari-
cose~BV! structures, i.e., the branching of adual modek
ÞS(q) off the primary OR modeq @7,8#. Whereas the exis-
tence of a short-wavelength destabilization mode of the
has been confirmed by numerical stability analyzes both
electroconvection and thermoconvection, starting from
basic equations@9,10#, no mechanism for this bimodal ha
been proposed so far. In the following, we will first presen
general WNL model for the bimodal secondary instabili
and then focus on thermoconvection.

The basic evolution equations for convection instabilit
take the general form@10#

D] tV5LeV1N2~V,V!1N3~V,V,V!1•••, ~1!

whereV is the local state vector of the fluid (V50 at rest!,
D,Le are linear andN2 ,N3 nonlinear differential operators
The WNL methods use as a basic ansatz for approxim
solutions of Eq.~1! some eigenmodesV1(p) of D21Le char-
acterized by their horizontal wave vectorp, and their growth
rates(p;e). In the WNL domain,s(p;e).tp

21@e2e0(p)#,
wheree0(p) is the linear threshold of the modep andtp is a
characteristic time; for the critical modeqc one has
e0(qc)50 andtqc

51. In nematics, experimental investiga
tions @6,8# as well as theoretical studies~see the Fig. 6.7.b of
@3#! have shown that the long-wavelength instabilities do
affect the OR, as soon as their wave vector has a sufficie
largeqy component. Hereafter we will use for our investig
tion of short-wavelength instabilities a primary modezig q
deduced from the thermoconvection experimentsq5qc

1 ŷ(qctan10°) @8#.
The homogeneous BV solutions of Eq.~1! are expressed

as

V5AV1~q!1BV1~k!1c.c.1~second harmonics!. ~2!

If k andq are active, i.e., of small growth rate, their seco
harmonics, which lie in the subspace of very negative grow
rate linear modes, can be obtained by adiabatic eliminat

V2~p,p8!52L0
21@N2†V1~p!,V1~p8!‡1perm# for pÞp8.

~3!
R2375 © 1997 The American Physical Society
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By inserting Eq.~2! in Eq. ~1!, and projecting, with an ad
equate scalar product in theV space, onto the adjoint vector
U1(q),U1(k) defined as in@10#, one obtains the amplitud
equations

] tA5eA2uAu2A2gkquBu2A,

tk] tB5~e2e0~k!!B2tkuBu2B2gqkuAu2B, ~4!

where we have assumed, sinceq is close toqc , e0(q).0
andtq.1. The main coupling coefficient is

gqk52tk^U1~k!,Tqk&

where

Tqk5N2„V1~2q!,V2~q,k!…1perm

1N2„V1~q!,V2~2q,k!…1perm

1N2„V2~q,2q!,V1~k!…1perm

1N3„V1~q!,V1~2q!,V1~k!…1perm. ~5!

The ORq solution of Eq.~4!, A5Ae,B50, loses stability
against a BV (q;k) if the secondary growth rate

tks85e~12gqk!2e0~k! ~6!

becomes positive, i.e., only ifgqk,1, and fore then larger
than

eV~q;k!5
e0~k!

12gqk
. ~7!

The active modek which minimizes this secondary thresho
is the dual ofq. In the case of a primary supercritical inst
bility towards the OR, as assumed here, one hasgqk→2
whenk→q. On the other hand, whenk moves away fromq,
gqk can reach strongly negative values which favor the
modal instability. Figure 1 shows a typical result forgqk in
thermoconvection, calculated with the parameters for the
uid crystal 5CB at 27 °C@3#, that we used in the experimen
@8#. The position of the dual mode is selected by a bala
between the nonlinear interaction factor (12gqk)

21, which
favorsk far from q, and the linear coste0(k) of the modek,
which favors k close to q ~in particular, preferentially
uku.uqu). The calculated dual mode, shown in Fig. 1, cor
sponds qualitatively to the one observed experimentally@8#.
Indeedk is in the zag region, far away fromq, but with a
smaller angle betweenk and x̂ : here (k,x̂).25° instead of
.55° in the experiments. This discrepancy could certai
be reduced by using more sophisticated numerical meth
but we will see that it does not affect our results concern
the mechanisms of the BV instability.

The main advantage of this WNL approach is that
secondary growth rate of the bimodal instability Eq.~6! has
an explicite dependence, governed bygqk only. The origin
of the BV instability can then be found by extracting fro
Eq. ~5! the terms responsible for the strongly negative val
of gqk in the dual region. We now get into the details of th
study for thermoconvection. There, the dimensionless lo
state vector of the fluid isV5(f,ny ,nz , f ,g), wheref5
temperature modulation,f ,g5 velocity potentials@10#. With
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the lowest-order Galerkin projection technique to expand
vertical dependence of the fields, the linear modes are
proximated by:

V1~q!5„f̃S1~z!, ñyS2~z!, ñzS1~z!, f̃ C1~z!, g̃S2~z!… eiq–r

There Sn are sine andCn are Chandrasekhar functions, o
parity (21)n11 under the inversionz°2z, z50 being the
mid-plane of the layer. The second harmonics have oppo
vertical symmetry under this inversion. For instance, the
mogeneous second harmonic reads:

V2~q,q8!5„f̃HS2~z!, ñy
HS1~z!, ñz

HS2~z!,

3 f̃ HC2~z!, g̃HS1~z!… ei ~q1q8!–r ~8!

with q852q. The ten components ofV1(q) andV1(k) are
calculated as eigenvectors of the ‘‘matrices’’D21L0 and
D21Le0(k) ; the 15 components ofV2(q,2q),V2(q,k) and

V2(k,2q) are then obtained by the nonlinear adiabatic f
mulas~3!. gqk is then calculated as the scalar product of E
~5!:

gqk52tk^U,T&

52tk~UfTf1Uny
Tny

1Unz
Tnz

1U fTf1UgTg!.

~9!

For each of the fieldsf,ny , . . . , each quadratic and cubi
term in the corresponding basic equation gives six contri
tions according to Eq.~5!, and as a resultgqk is a sum of
more than 3000 terms. The contributions of each of th
terms are shown on top of Fig. 2. Theny contributions, like

FIG. 1. Results of the stability analysis of aq zig against short-
wavelength perturbation modesk. Thin line: circle uku5uqu.p in
units of the inverse layer thickness. Dashed line: frontier of
active mode domain defined bys(k,eV).20.15 (eV50.09).
White region:gqk.1⇔ the modek cannot destabilize the modeq.
Light gray region: 0,gqk,1⇔ the modek, when linearly excited,
can destabilize the modeq @eV(q;k).e0(k)#. Deep gray region:
gqk,0⇔ the mode k is nonlinearly excited by the modeq
@eV(q;k),e0(k)#. Under the application ofS:ky°2ky , gqk is
asymmetric. It reaches strongly negative values only for ac
modesk zag, and thus the minimum ofeV(q;k) (5 bimodal vari-
cose thresholdeV) is obtained for ak zag.
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FIG. 2. Contributions of all nonlinear terms in thef,ny ,nz , and f basic equations togqk , for the wave vectorsq andk of Fig. 1. The
first range of indexes, on the discrete horizontal axis, refers to the contributions due toTf in Eq. ~9!, the second range to the contribution
due toTny

, etc. In each range the elementary terms are ordered according to Eq.~5!. The asymmetry ofgqk between zag and zig perturbatio
wavevectors,dgqk5gqk2gqS(k) , is shown on the lower curve to be mainly due to two nonlinear coupling terms~arrows!.
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those of theg velocity potential~not shown!, are all much
smaller than the largest ones in the other fields contributio
but strong contributions due toTf , Tnz

or Tf exist. The
complexity inherent in nonlinear physics, which implies t
generation of harmonics, and so the interaction of a la
number of modes via a large number of coupling terms
manifest in Fig. 2. This complexity implies that a lot o
mechanisms are, at small angles (k,x̂), responsible for the
bimodal secondary instability. Nevertheless, we will sh
that only few mechanisms control the asymmetry of the s
facegqk under the application of the reflectionS:ky°2ky ,
or the values ofgqk at large angles (k,x̂).

The asymmetry of the surfacegqk under all reflections
~see Fig. 1! is specific to anisotropic systems. In isotrop
convection for instance, the coupling coefficient betwe
cross rollsq and k would be invariant under the reflectio
with respect to the plane (q,ẑ). In our casegqk takes values
more negative fork zag than for its symmetricS(k) zig, i.e.,
dgqk5gqk2gqS(k) is negative fork in the zag region, and
that selects the dual in the zag region. Indgqk , many terms
cancel, and thus~bottom of Fig. 2! two contributions domi-
nate all the other ones, by at least 40%@11#. These contribu-
tions appear inTf and Tnz

, respectively, i.e., in the corre
sponding right-hand side of the basic equations~1! for these
two fields. Since the light-hand side of Eq.~1! reads simply
for these fields] tf5•••,] tnz5•••, we call themf and nz
source terms. They appear in the third line of Eq.~5!, and
couple theny component ofV2(q,2q) to some component
of V1(k). The first contribution is due to thef source term

2Rka]y~nynz!52Rkañy
H~q!ikyñz~k!S1

2~z!eik–r ~10!

from the anisotropic heat diffusion terms,R being the Ray-
leigh number andka the anisotropy of heat diffusivity. The
second contribution is due to thenz source term

ny]yvz5 ñy
H~q!ikyk

2 f̃ ~k!S1~z!C1~z!eik–r ~11!
s,

e
is
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from the a2 viscous coupling terms~the director equation
involves the anisotropic viscositiesa2 and a3, but thea3
contribution is here negligible!. We will now elucidate in
two steps the mechanism expressed by terms~10! and ~11!.

First, we focus on theny factor in terms~10! and~11!. It
is theny component of the second harmonicV2(q,2q) ~8!,
horizontally homogeneous and even inz. It thus indicates a
global rotation of the director in oblique rolls. When one
passes from the zig to the zag, i.e., appliesS:qy°2qy , one
has ñy

H(q)°2 ñy
H(q): the rotation occurs only for OR, in

symmetrical directions for the zig and the zag~Fig. 3!. The
main contributions toñy

H(q) are due to the quadraticny

source termsnz]zvy2ny]xvx , from thea2 viscous coupling
terms, and2vz]zny from the advection terms. Therefore
the rotation can be heuristically understood, after notic
that, because of thea2 terms in the director evolution equa
tion, n̂ reorients in order to avoid velocity gradients. In O
this can be achieved by a rotation ofn̂ towards the direction
of the flow where there is no velocity gradient, i.e., the a
of the rolls.

Second, we analyze the resonances which can be ind
by the terms~10! and ~11!. With our phase choice,f̃(k),

FIG. 3. Nonlinear reorientation of the director fieldn̂ in oblique

rolls. The layer is seen from above;x̂5 anchoring direction5 n̂ at
rest. For 5CB at 27 °C, one should have in the midplane of

layer ny5 ñy
H(q)e.61.7e, depending on theS symmetry of the

oblique roll structure. This reorientation selects theS symmetry~zig
or zag! of the secondary wave vectork in the bimodals, with the

criterion ñy
H(q)ky.0.
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f̃ (k), and ñz(k)/ i are always positive real numbers. Ther
fore thef source term~10! and thenz source term~11! will
excite the f and nz components of the modek if
ñy

H(q)ky.0. For q zig, since ñy
H(q),0, this occurs if

ky,0, i.e., selects the dualk in the zag region. Physically
terms ~10! is a geometrical correction to the heat focusin
and terms~11! to the flow-induced orientation of the direc
tor. They express that, after a rotation of the director,f and
nz modulations with a new wave vector oriented in the sa
direction will be preferentially enhanced.

The couplings of the convective velocity field with th
director, and the focusing terms, being quite analogous
thermoconvection and electroconvection, these nonlin
mechanisms must also develop in electroconvection. Th
confirmed by the systematic observation of the second
transition OR→ BV in the regime where the director disto
tion is the less damped: at low stabilizing magnetic field
thermoconvection, and at low frequencyv of the applied
voltage in electroconvection@8,7#.

These experiments have shown that the BV instabi
usually produces dual modes with a large angle argk5(k,x̂):
cf. the angle of 55° measured in@8#, or, in electroconvection
at low v, the angle of 70° found recently in@7#. Since in
both casese0(k) reaches very high values for argk→90°,
-
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e
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ry
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this corresponds in our model@see the expression~7! of the
BV threshold# to the fact thatgqk reaches there very negativ
values. Indeed, on the circleuku5uqu, we have found that as
soon as argk.40°, Eq. ~11! becomes the leading contribu
tion to gqk , and that for argk→90°, gqk reaches, due to this
contribution, values of the order of2F52 the ratio of ther-
mal to orientational diffusivity.2800. The mechanism as
sociated with Eq.~11! becomes thus for argk.40° the
unique leading mechanism towards the BV.

In conclusion, we have developed a WNL model to d
scribe the bimodal secondary instability in anisotropic e
tended systems. We have then shown how a careful stud
the coupling coefficient leads to the nonlinear terms of
basic equations which control the bimodal instability. W
have thus discovered that, in planar nematic convection
reorientation of the director field in the horizontal plane
the key feature that excites the dual wave vector destab
ing the oblique rolls. We believe that our method to extra
the physical mechanisms is applicable to all nonlinear s
tems in the low amplitude regime.

This work was supported by the Direction des Recherc
et Études Techniques under Contract No. DGA/DRE
94136.
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